مهندسی مواد و متالورژی
 
آشنایی با رشته ی مهندسی مواد و متالورژی

بهترین و کامل ترین مرجع مهندسی مواد و متالورژی
 
نوشته شده در تاريخ دوشنبه چهارم اردیبهشت 1391 توسط امید اشکانی

چارت دروس رشته ی مهندسی متالورژی صنعتی

 

قبل از هر حرفی ... به نام خداوند ایثار و انصاف

http://www.uplooder.net/img/image/6/c4c2441546a825c66994a70b85c497c2/03532944020067646313.gif

http://www.uplooder.net/img/image/7/9e54068820f352c9c362dbeeb85bc731/20739620573032945558.gif

 

http://www.uplooder.net/img/image/28/e411792b680be47d90c46d5ccd82bef5/84436035030628131501.gif

 

سلام دوست من.

به وبلاگ مهندسی مواد و متالورژی خوش آمدید ، در این وبلاگ سعی را بر این دارم تا بهترین مطالب را راجع به این علم در تمامی زمینه ها از جمله بیو مواد ، جوشکاری ، ریخته گری و ... را برای شما جمع آوری کنم و برای مطالعه و توسعه ی این علم تلاش کنم.

همچنین از شما دوستان درخواست دارم تا در خبرنامه ی این وبلاگ عضو شوید تا بهترین مطالب و جدیدترینها را راجع به رشته ی مهندسی مواد برای شما ارسال کنم.

فرم عضویت در خبرنامه در قسمت امکانات وبلاگ موجود است . کافی است نام و نام خانوادگی خود را در قسمت اول و پست الکترونیک خود را در قسمت دوم نوشته و بر روی کلمه ی عضویت کلیک کنید.

امید وارم مطالب جمع آوری شده مفید واقع بشود . 

 

 چارت دروس مهندسی مواد و متالورژی

http://www.uplooder.net/img/image/25/f65a872b1ccb693a2f16526f19d13bd7/00232060868107156657.gif

چارت در سایز اصلی

 

 --------------------------------------------------------------------------------------------

http://www.uplooder.net/img/image/93/2cb328162e136a5ab4df8c88288ae677/Iran_flag-XL-anim.gif

کلیه ی مطالب این وبلاگ ، پیرو قوانین و مقررات جمهوری اسلامی ایران می باشد .

کپی برداری از مطالب تنها با ذکر منبع مجاز است .

برچسب‌ها: مواد و متالورژی
نوشته شده در تاريخ چهارشنبه بیست و چهارم فروردین 1390 توسط امید اشکانی

آشنایی کامل با رشته ی مهندسی مواد و متالورژی

 

به نام خدا

http://www.uplooder.net/img/image/97/ab3269eb6b08be054b9dd84603dfd721/223.gif

مقدمه

این تعریف که «متالوژی که از قدیمی‌ترین هنرها و یکی از جدیدترین علوم است» ، بخوبی تاریخچه طولانی و جالب رشته متالوژی را بیان می‌کند. از زمانی که بشر فلز را شناخت، متالوژی را به‌عنوان یک هنر فرا گرفت. این علم ، فرآوری مواد معدنی از کانه‌های آنها (جداسازی از سنگ معدن) ، ذوب ، تصفیه و تولید شمش ، بهبود خواص و تهیه آلیاژها و فن کار بر روی فلزات و شکل دادن آنها را در بر می‌گیرد. صنعت متالوژی در جهان از دیرباز به‌عنوان صنعت مادر شناخته شده ، با پیشرفتهای روز افزون تکنولوژی ، نقش آن آشکارتر می‌گردد. شواهد باستان شناسی نشان می‌دهد که ساکنین فلات ایران ، جزو اولین اقوامی بوده‌اند که به کشف فلزات و استفاده از آن نائل گردیده‌اند. با در نظر گرفتن این سابقه دیرینه ، همچنین نقش روز افزون فلزات در زندگی بشر و وجود معادن غنی متعدد در کشورمان لازم است که دست‌اندرکاران متالوژی در شناسایی هر چه بیشتر این رشته کوشا بوده ، به طریقی سطح اطلاعات علمی و فنی سایرین را در این زمینه بالا ببرند.

تاریخچه متالوژی

دوره فلزات پس از عصر سنگ بوده ، از حدود 6 تا 7 هزار سال پیش از هجرت آغاز شده است. به نظر می‌رسد که مس اولین فلزی است که بطور خالص و طبیعی و جدا از مواد معدنی مورد استفاده بشر قرار گرفته است. با نگاهی به انوع سنگهای مس ، می‌بینیم که آنها کم و بیش از ظاهری فلزی با رنگهای الوان ، نظیر نیلی ، لاجوردی ، سبز ، طلایی و رخ برخوردار می‌باشند این امر می‌تواند یکی از علل عمده توجه بشر اولیه به ترکیبات حاوی مس باشد. از طرفی مس به‌صورت خالص در طبیعت یافت می‌شود و قابلیت شکل‌پذیری مناسبی دارد.

برخی از پژوهشگران نیز معتقدند که اولین بار ذرات براق
طلا که در کف رودخانه ها پراکنده بوده است، توسط بشر شناسایی شدند. مصریان و شاید هندیان بیش از سایر ملل در استخراج طلا از سنگهای آن توفیق داشته‌اند. در ایران نیز از دوره هخامنشی ، آثار متعددی از طلا و نقره خصوصا در کنار رود جیحون و در شهر همدان کشف شده است.

با گذشت زمان ،
قلع ، نقره ، سرب و آنیتموان (سنگ سرمه) نیز کشف شد. فلزکاران با استفاده از آتش ، سرخ کردن و سپس ذوب فلزات ، آمیختن آنها را تجربه کرده ، به شناخت تجربی آلیاژها توفیق یافتند. از اختلاط قلع و مس ، مفرغ پدید آمده ، عصر مفرغ آغاز شد. مفرغ از هنر زیبایی با مس ، طلا و نقره رقابت می‌کرد و سختی و دوامش از انها بیشتر بود و نیازهای بشر را نیز برای ساخت ابزارهای مختلف تامین می‌کرد، لذا بشر تا مدتها به فکر ساختن آلیاژ یا کشف فلز جدیدی نبود


بدرستی معلوم نیست که انسان نخستین بار چگونه و از کجا سنگ آهن را کشف و ذوب نمود و فلز آهن را بدست آورد، اما از شواهد امر پیداست که از 5000 سال پیش انسانهای نخستین آهن را بکار می‌گرفتند و تقریبا در نصف این مدت ، آهن بعنوان وسیله ای زینتی و فلزی افسانه‌ای از توجه خاصی برخوردار بوده است. مصریان قدیم به آهن ، با- ان- پتن یا فلز بهشتی می‌گفتند.

به نظر می‌رسد که ابتدا شهاب‌های آسمانی که حاوی آهن و نیکل (15-6 درصد نیکل) بوده‌اند، توسط انسانهای نخستین بکار گرفته شده‌اند. اطلاق سنگ اسمانی و فلز ستارگان به آهن نیز موید همین است. آشوری‌ها ، بابلی‌ها ، کلدانی‌ها و عبری‌ها به‌علت گرانبها بودن آهن از آن در ساختن زیور آلات استفاده می‌کردند. در عهد حمورابی (2700 سال پیش از هجرت) ، بهای آهن هشت برابر نقره و معادل سه‌ربع بهای طلا بوده است.

در ایران قدیم نیز در دوره هخامنشی به مرور مصالح آهنی جای مصالح مفرغی را گرفت، بطوری‌که در اواخر این دوره ، اسلحه‌های آهنی جایگزین اسلحه‌های مفرغی شدند. پیشینیان ، سنگ معدن آهن را با زغال چوب مخلوط کرده ، مشتعل می‌نمودند. در دوران باستان ، در ایران ، بین النهرین ، یونان و روم مجموعا هفت فلز شناخته و بکار برده شده‌اند که شامل مس ، طلا (زر) ، نقره (سیم) ، آهن ، سرب (آبار) ، اقلع (ارزیز) و جیوه (سیماب) و پلاتین می‌باشند.

تولید فلزات در طول زمان

از دوران باستان تاکنون مجموعا 87 فلز کشف شده است که به جز 7 فلز مذکور ، 2 فلز در قرون وسطی ، 15 فلز در قرن دوازدهم هجری ، 43 فلز در قرن سیزدهم هجری و 20 فلز در قرن چهاردهم هجری (قرن معاصر) کسف شده‌اند. البته بین تاریخ کشف و زمانی که تولید فلزات از نظر اقتصادی مقرون به صرفه شده است، فاصله زمانی طولانی وجود دارد. چون در بررسی مسائل متالوژی ، نه‌تنها تولید فلزات امر مهمی می‌باشد، بلکه موارد کاربرد آنها نیز باید قابل توجیه باشد.

برای مثال
اورانیوم در سال 1221هجری خورشیدی کشف شده است، اما تولید صنعتی آن تا سال 1320هجری خورشیدی (1841م.) طول کشیده است. به عبارت دیگر حدود یک قرن پس از کشف اورانیوم ، یعنی زمانی که پدیده شکافت اتمی فلزات هسته‌ای تحت استفاده مطلوب قرار گرفت، تولید آن در سطح صنعتی شروع گردید.  

شکل‌گیری علم متالوژی

با گذشت زمان ، کشف روشهای جدید استخراج و تصفیه فلزات ، شناسایی مشخصات ساختاری و فیزیکی مواد و فنون جدید شکل دادن و کاربر روی فلزات ، صنعت متالوژی به عنوان شاخه ای از علم ، جایگاهی مستقل یافت. امروزه علم متلوژی را به دو بخش کلی شامل متالوژی استخراجی و متالوژی صنعتی تقسیم نموده‌اند که این دو بخش ، اخیرا در دانشگاهها نیز به‌عنوان گرایشهای رشته مهندسی متالوژی انتخاب شده‌اند.

متالوژی استخراجی و شیمیایی شامل جداکردن فلزات از سنگ معدن و تصفیه آنها (تولید فلزات) ، شناخت انواع کوره‌ها ، سوخت‌ها و
فعل و انفعالات شیمیایی می‌باشد. این گرایش انواع متعددی از روشها را در بر می‌گیرد که از جمله می‌توان به کانه آرایی ، پر عیار کردن مواد معدنی ، شستن ، ذوب کردن ، تصفیه فلز مذاب و تولید شمش اشاره نمود.

متالوژی صنعتی شامل کار بر روی فلزات و مواد و تهیه محصول نهایی می‌باشد. در این گرایش همچنین خواص و مشخصات فیزیکی ، ساختاری و مکانیکی مواد نیز بررسی می‌شوند. منظور از کار کردن روی فلزات ، روشهای مختلف تولید مصنوعات فلزی می‌باشد که مهمترین شیوه‌های تولید عبارتند از: متالوژی پودر ، شکل دادن ، جوشکاری و ماشینکاری.

انتخاب نوع روش تولید عمدتا به مسائل اقتصادی ، خواص فلزات ، زمان تولید ، اندازه ، شکل و تعداد قطعات مورد نیاز بستگی دارد. به‌عنوان مثال ، فلزاتی که خاصیت
پلاستیک کمی دارند یا قطعاتی که دارای اشکال پیچیده هستند، به روش ریخته گری شکل داده می‌شوند.

معرفی مهندسی مواد و گرایشهای آن

موضوع مهندسي مواد يكي از رشته هاي مهندسي است كه به درستي لقب مادر رشته هاي مهندسي را به خود اختصاص داده است. اين رشته به عنوان يك رشته مستقل، قدمتي حدود هفتاد ساله دارد. در ايران نيز از حدود 40 سال قبل اين رشته در دانشگاه‌هاي كشور تدريس مي‌شود. به جرات مي‌توان گفت كه اكثريت قريب به اتفاق مصنوعات بشري كه در اطراف مي‌بينيم. حاصل تلاش مهندسين مواد است. اگر به اتومبيل، قطار و هواپيما توجه كنيم، قسمت‌هاي اصلي آن مثل بدنه، شيشه و موتور از مواد تشكيل شده است. در ساختمان‌ها تمام قطعات فلزي بكار رفته در اسكلت ساختمان، تمام مواد اوليه سيم كشي، مواد بكار رفته در لوله كشي‌هاي آب، شوفاژ، گاز، وسايل و لوازم خانگي و... تماماً به مهندس مواد مربوط مي‌شود. در حال حاضر رشته مهندسي مواد در سطح دانشگاه‌هاي ايران در مقطع كارشناسي در سه گرايش دانشجو مي‌پذيرد كه عبارتند از: متالورژي استخراجي، متالورژي صنعتي و سراميك.

گرايش متالورژي استخراجي

گرايش متالورژي استخراجي يكي از زيرمجموعه هاي رشته مهندسي مواد است. كشور ايران جزء معدود كشورهاي جهان بشمار مي رود كه داراي معادن متنوع و غني از فلزات است. با وجود اين مزيت نسبي، متأسفانه هنوز ما نتوانسته ايم به جايگاه واقعي خود در توليد فلزات در جهان برسيم. در ايران در حال حاضر فقط فلزاتي نظير آهن، مس، سرب، روي و آلومينيوم بصورت انبوه توليد مي شود. هنوز ما وارد كننده فلزاتي نظير تيتانيم، منيزيم، كبالت و ... هستيم. حتي بايد اشاره كرد كه بحث روز ايران در رابطه با غني سازي اورانيم، با وجود معادن حاوي اورانيم اخيراً مورد توجه قرار گرفته، كه يك بحث كاملاً متالورژيكي است. در حقيقت بايد از متخصصين امر استخراج فلزات بعنوان متوليان توليد فلز اورانيم نام برد. بنابراين دير يا زود ايران بايد توليد ديگر فلزات مهم صنعتي و استراتژيك را آغاز كند. اين مسئله جز با كمك نيروهاي متخصص امكان پذير نيست.

در اين رشته به هيچ وجه در مورد معدن كاري و استخراج معادن بحث نمي شود. اين جزء مواردي است كه به فارغ التحصيلان رشته مهندسي معدن مربوط مي شود. بلكه كار فارغ التحصيلان اين رشته هنگامي آغاز شده كه سنگ معدن حاوي فلز در محل كارخانه تحويل گرفته مي شود.
در اين گرايش دانشجويان، اصول و مباني علمي استخراج فلزات را آموزش مي بينند. در كنار آموزش فناوريهاي متداول توليد فلزات، روشهاي نوين توليد فلزات نيز تدريس مي شود.
از ديگر زمينه هايي كه در اين گرايش آموزش داده مي شود ميتوان به خوردگي و از بين رفتن فلزات و روشهاي جلوگيري از آن و روشهاي پوشش دهي فلزات اشاره كرد. گفتني است كه در حال حاضر 33% از درآمد ناخالص ملي كشور آمريكا بواسطه مسئله خوردگي انواع سازه ها، اتومبيلها، صنايع و .... تلف مي شود. اين نشان دهنده اهميت علم خوردگي فلزات است. همچنين با عمليات خاص ميتوان در سطح فلزات، پوششهاي خاصي ايجاد كرد كه خصوصيات سطحي فلزات را بطور چشمگيري بهبود داد. بعنوان مثال ميتوان با ايجاد پوششهاي خاص سختي سطح فلزات را تا پانزده برابر افزايش داد. يا با ايجاد پوششهاي مناسب در سطح فلزي مثل آهن، آنها را در محيطهاي خورنده اي مثل اسيد سولفوريك به راحتي بكار برد. دانشجويان جزء مواردي كه در اين رشته با آن آشنا مي شوند خوردگي و روشهاي جلوگيري از آن و علم پوشش دهي فلزات است.
زمينه هاي اشتغال:
دانش آموختگان اين گرايش علاوه بر كار در كارخانجات توليد فلزات نظير توليد فولاد و ذوب آهن، مس، آلومينيوم، سرب و روي و ... مي توانند در مراكز تحقيقاتي در ارتباط با توليد فلزات مشغول به كار شوند. همچنين در صنايعي مثل نفت و پتروشيمي در ارتباط با مسائل بسيار مهم و حساس خوردگي فعاليت كنند.
زمينه هاي ادامه تحصيل:
دانشجويان پس از اخذ مدرك كارشناسي مي توانند اين رشته را در ايران در سطوح كارشناسي ارشد و دكتري ادامه دهند. دانشگاه علم و صنعت ايران تاكنون بيش از ده دوره فارغ التحصيل دوره دكتري در اين گرايش داشته است و هم اكنون فارغ التحصيلان آن در دانشگاههاي معتبر ايران و مراكز صنعتي و تحقيقاتي مشغول به كار هستند.
براي آن دسته از فارغ التحصيلان كارشناسي نيز كه قصد ادامه تحصيل در خارج از كشور را دارند، با توجه به سابقه خوبي كه دانشجويان ايراني در خارج از كشور داشته اند، دانشگاههاي خارجي به خوبي پذيراي فارغ التحصيلان اين گرايش هستند.
گرايش متالورژي صنعتي
رشته متالورژي صنعتي يكي از زير مجموعه‌هاي رشته مهندسي مواد است. در مهندسي مواد شناخت ساختار مواد و خواص آن و شناخت ارتباط بين اين ساختار و خواص در جهت افزايش زمينه‌هاي كاربردي و طراحي مواد نو و تركيبات جديد از اهميت ويژه‌اي برخوردار است.
با توجه به نام و محتوي اين رشته ملاحظه مي‌شود كه در اين رشته از علم شناخت فلزات و آلياژها در جهت كاربردهاي صنعتي استفاده مي‌شود. علم متالورژي كه يكي از شاخه‌هاي علم مواد مي‌باشد در زمينه طراحي و توليد آلياژهاي صنعتي كاربرد دارد. كليه قطعات مكانيكي كه در صنايع مختلف بكار مي‌رود از فلزات و آلياژهاي گوناگوني ساخته شده اند. انواع فولادها و چدن‌هاي آلياژي، آلومينيم و آلياژهاي آن، مس، منيزيم، روي و ساير فلزات به‌طور وسيع در ساخت انواع قطعات صنعتي مورد مصرف قرار مي‌گيرند. اين قطعات در صنايع مختلف به‌خصوص صنايع خودروسازي، هوا- فضا، هواپيماسازي، پتروشيمي، صنعت نفت و گاز، ساختمان، سازه‌هاي فضايي، حمل‌ونقل، صنايع نظامي به‌كار مي‌روند.
زمينه‌هاي كاربردي جديد:
رشته متالورژي صنعتي علاوه بر كاربردهاي متداول كه در صنايع گوناگون دارد در جهت طراحي و توليد مواد پيشرفته به‌سرعت در جهان در حال توسعه مي‌باشد. مواد مغناطيسي نو با خواص برتر، استفاده از مواد مركب (كامپوزيت) پايه فلزي‌، ساخت مواد پيشرفته از طريق تركيبات بين‌فلزي، ‌استفاده از آلياژهايي كه مي‌توانند جايگزين اعضاي بدن انسان شوند، ايجاد آلياژهاي سبك جهت توليد قطعات حساس، ‌طراحي و توليد آلياژهايي كه در دماهاي بالا به‌كار مي‌روند،‌ طراحي آلياژهايي كه در شرايط ويژه و سخت كاربرد دارند مثال‌هايي از كاربرد رشته متالورژي صنعتي در توليد مواد پيشرفته مي‌باشد. در سال‌هاي اخير رشته‌هايي مانند مواد زيستي و نانوتكنولورژي مورد توجه بسياري از محافل علمي، تحقيقاتي و صنعتي جهان قرار گرفته است كه رشته متالورژي صنعتي مي‌تواند نقش اساسي در جهت توسعه اين‌گونه مواد پيشرفته ايفا نمايد. دراين راستا در ايران و به‌خصوص دانشگاه علم و صنعت ايران در سال‌هاي اخير تحقيقات علمي گسترده‌اي صورت گرفته است و دانشكده مهندسي مواد و متالورژي به عنوان قطب علمي مواد پيشرفته كشور شناخته شده است. پژوهش و تحقيقاتي كه در اين رشته و با همكاري با ساير مراكز علمي جهان صورت مي‌گيرد در قالب مقالات علمي در معتبرترين مجلات جهان به‌چاپ مي‌‌رسد.

زمينه‌هاي اشتغال و ارتباط با ساير رشته‌ها:

به‌دليل كاربرد وسيع مواد و به‌خصوص فلزات در ساخت كليه قطعات صنعتي مي‌توان به زمينه اشتغال دانش‌آموختگان اين رشته در صنايع گوناگون پي‌برد. در بخش دولتي شركت‌ها و كارخانجات بزرگ نظير توليد فولاد، ذوب‌آهن، صنايع خودروسازي،‌ صنايع هوا- فضا، صنايع نظامي و صنعت نفت،‌پتروشيمي و ... و در بخش خصوصي اكثر كارخانجات توليد قطعات صنعتي به‌خصوص در صنايع خودروسازي، ساختمان‌سازي،‌ معادن ‌و صنعت سيمان مي‌تواند زمينه‌هاي جذب دانش‌آموختگان رشته متالورژي صنعتي را فراهم سازد. اين رشته‌ ماهيتاً‌ ارتباط نزديكي با دو رشته مهندسي مكانيك و مهندسي صنايع دارد واكثر پروژه‌هاي صنعتي به‌صورت كارگروهي و تيمي به انجام مي‌رسد.

زمينه‌هاي ادامه تحصيل در ايران و جهان:

دانش‌آموزاني كه علاقه‌مند به درك عميق پديده‌ها و رفتار مواد مختلف و يافتن كاربردهاي نوين و طراحي مواد جديد متناسب با نيازهاي روزافزون بشري مي‌باشند و همچنين علاوه‌بر داشتن علايق مهندسي،‌ خود را به علوم نيز نزديك حس مي‌كنند مي‌توانند در اين رشته موفق باشند. گرايش سراميك
رشته سراميك يكي از زير مجموعه‌هاي رشته مهندسي مواد است. وظيفه اصلي يك مهندس مواد در ابتدا شناخت ساختمان مواد و خواص آن و شناخت ارتباط بين اين ساختار و خواص است و در مواردي ديگر با توجه به نياز كاربردي كه وجود دارد مواد جديد و تركيبات جديد را طراحي نمايد.
اما رشته سراميك به عنوان يك زير شاخه رشته مواد چيست؟
در ابتدا با شنيدن نام سراميك هر انساني به ياد ظروف سفالين مي‌افتد و بسياري فكر مي‌كنند كه رشته مهندسي سراميك يك رشته هنري است و گروهي ديگر اين تصور را دارند كه اين رشته محدود به ساخت محصولاتي چون ظروف سفالين، كاشي يا چيني مي‌باشد. اما نكته قابل توجه در رابطه با اين شاخه از علم مواد اين است كه با شناخت و ورود دست‌آوردهاي آن به دنياي صنعت يك مرحله جديد و يك تحول بزرگ پديد آمد. اين شاخه كه بسيار هم جوان است ‌سبب شد تا تحول بزرگي درصنايع فضا، الكترونيك، اپتيك، پزشكي و بسياري از علوم ديگر پديد آيد.
بطور كلي اگر تعريفي از سراميك به شكل ساده و ابتدايي بدهيم بايد بگوييم كه مواد سراميك عبارتند از مواد معدني غيرفلزي. كافي است كه به اطراف خود نگاه كنيد، هر آنچه كه جزء مواد آلي (مانند پلاستيك، چوب و لاستيك)و فلزي نباشد سراميك است. پس مي‌بينيم كه در دنياي كنوني سراميك‌ها ما را محاصره نموده‌اند. شيشه‌ها از جمله شيشه‌هاي ساختماني، اپتيك، فيلترهاي بسيار دقيق اپتيكي، مصالح ساختماني از جمله سيمان، كاشي،‌ چيني بهداشتي، نسوزها و كلاهك‌ها و پوشش‌ بيروني موشك‌هاي فضاپيما و قطعات اصلي كامپيوتر‌ها، اجزاي دروني قطعات الكترونيك از جمله Ic
ها، خازن‌ها،‌ مقاومت‌ها،‌ ايمپلانت‌ها و بسياري از قطعاتي كه جايگزين اعضاي بدن انسان مي‌شود، فروالكتريك‌ها، فري مغناطيس‌ها و فوق‌هادي‌ها و بسياري كاربردها و مواد ديگر كه همه و همه مديون شناخت و بوجود آمدن رشته سراميك است. در سال‌هاي اخير رشته‌هايي مانند مواد زيستي و نانوتكنولوژي مورد توجه بسياري از محافل علمي، تحقيقاتي و صنعتي جهان قرار گرفته است كه رشته سراميك با دوشاخه بايو سراميك‌ها و نانو سراميك‌ها در اين رشته‌ها مطرح مي‌باشد.
به طوركلي سراميك‌ها به دو دسته سنتي و مدرن تقسيم مي‌شوند. در ايران به شكل عمده صنعت سراميك متمركز بر توليد سراميك‌هاي سنتي است كه شامل صنايع شيشه،‌ چيني،‌ كاشي،‌سيمان،‌ نسوز و ... بوده است. امكان ادامه تحصيل در اين رشته تا مقطع دكترا درداخل كشور وجود دارد، وضعيت ادامه تحصيل در دانشگاه‌هاي خارج از كشور نيز در اين رشته بسيار مطلوب مي‌باشد و اين رشته بسيار مورد توجه جوامع صنعتي و دانشگاهي جهان است.
از ديدگاه وضعيت بازار كار،‌ با توجه به رشد قابل توجهي كه اين صنعت در ايران داشته و دارد، بازار كار مناسبي را مي‌توان براي آن متصور شد. هر چند با ظرفيت قابل ملاحظه‌اي كه سالانه در اين رشته جذب دانشگاه‌ها مي‌شوند تا حدودي از قطعيت اين سخن كاسته مي‌شود. نزديكي اين شاخه از مهندسي با رشته‌هاي فيزيك و شيمي بيش از تمامي رشته‌هاست و بسته به شاخه‌هاي خاص به هر يك از دو رشته فيزيك و شيمي كاربردي نزديك مي‌شود. دانش‌آموزاني كه علاقمند به درك عميق‌تر علل پديده‌هاي رفتاري مواد مختلف و يافتن كاربردهاي نوين و طراحي مواد جديد متناسب با نيازهاي روزافزون بشري مي‌باشند و به طور كلي علاوه بر داشتن علايق مهندسي خود را به علوم نيز نزديك حس مي‌كنند، مي‌توانند در اين رشته موفق باشند.
درهرحال كشور ما داراي خلاء هاي بسياري براي محصولات و شاخه‌هاي جديد و نوين سراميكي است.همگام با توسعه همه جانبه كشورنياز فراواني به مهندسان و دانشمندان تحصيل كرده در اين رشته وجود خواهد داشت و هر فرد متخصص با دارا بودن جديت، اعتماد به نفس و پشتكار مي‌تواند بازار كاري مناسبي براي خود پديد آورد.


نوشته شده در تاريخ پنجشنبه بیست و نهم آبان 1393 توسط امید اشکانی

مختصری درباره ی آزمایش شکست

 

مختصری درباره ی آزمایش شکست

شکست فلزات آهنی و غیر آهنی ، شکست در خواص مکانیکی

مقاله ی مورد نظر یک مقاله ی کامل درباره ی شکست است که به طور مفصل به این موضوع اشاره دارد. این مقاله به صورت فایل ورد بوده و در ۱۰ صفحه تنظیم شده است .

رمز فایل metallurgypaper می باشد .

برای دانلود رایگان بر روی ادامه مطلب کلیک کنید.


برچسب‌ها: مختصری درباره ی آزمایش شکست

ادامه مطلب
نوشته شده در تاريخ چهارشنبه بیست و هشتم آبان 1393 توسط امید اشکانی

پوشش‌دهي اسپري حرارتي

 

پوشش‌دهي اسپري حرارتي چيست؟

پوشش‌دهي اسپري حرارتي فرآيندي است براي نشاندن لايه‌هاي نازک از يک پوشان فلزي بر روي سطح مورد نظر که منجر به ايجاد خواص ويژه‌اي بر روي سطح مي‌شود.

مواد پوشان چه به صورت پودر يا به شکل مفتول، ابتدا در داخل يک منبع حرارتي ذوب مي‌شود و سپس با سرعت بسيار بالا از مخزن به بيرون رانده مي‌شود و به شدت به سطح آماده شده برخورد مي‌کند و تشکيل يک لايه نازک متراکم محافظتي را مي‌دهد.

 

http://www.uplooder.net/img/image/59/a9f7b8adf056ece5045e31b733c4e2ad/108.gif

 


برچسب‌ها: پوشش‌دهي اسپري حرارتي

ادامه مطلب
نوشته شده در تاريخ سه شنبه بیست و هفتم آبان 1393 توسط امید اشکانی

فرآیند فشردن گرم بر خواص قطعات متالورژی پودر
 
 
 
 
در متالورژی پودر برای رسیدن به چگالی های بالاتر روش های متعددی وجود دارد. روش فشردن و تف جوشی دو مرحله ای باعث دستیابی  به چگالی تا حدود 7.3  گرم بر سانتیمتر مکعب برای قطعات آهنی می شود، اما به دلیل هزینه بالا و  ملاحظات ابعادی روشی محدود است. فشردن گرم روش جدیدی است که باعث افزایش  چگالی قطعات در یک مرحله فشردن و تف جوشی می شود.
 با این روش می توان به  چگالی و خواص مکانیکی قابل مقایسه با فشردن و تف جوشی دو مرحله ای دست  یافت. در این تحقیق خواص مکانیکی قطعاتی از جنس
Astaloy CrM که پودری پیش آلیاژی و تولید شده به روش افشانش آبی است، مورد مطالعه قرار  گرفت. قطعاتی به دو روش فشردن گرم و فشردن و تف جوشی متداول تهیه شدند و  خواص آن ها بررسی شد. تاثیر دمای قالب بر خواص مکانیکی قطعات تولیدی نیز  مورد مطالعه قرار گرفت. نتایج آزمایش ها به خوبی برتری روش فشردن گرم را  نسبت به روش فشردن و تف جوشی متداول نشان می دهند. همچنین مشاهده شد بهترین خواص مکانیکی قطعات هنگامی به دست می آید که دمای قالب 150oCباشد.

برچسب‌ها: بررسی تاثیر فرآیند فشردن گرم بر خواص قطعات متالورژ
نوشته شده در تاريخ دوشنبه بیست و ششم آبان 1393 توسط امید اشکانی

مبدل حرارتی چیست ؟

مبدل حرارتی (Heat exchanger) دستگاهی است که انرژی حرارتی را از سیالی به سیال دیگر منتقل می کند. سیال ممکن است مایع یا گاز باشد. به این صورت که دو سیال با دمای مختلف را وارد محفظه می کنند و میان آن ها انتقال حرارت صورت می گیرد. 

کاربرد مبدل حرارتی  در پالایشگاه ، نیروگاه ، موتورخانه ساختمان ، یخچال ، سیستم های تهویه مطبوع، ها و... می باشد.

مبدل های حرارتی بر اساس کاربری ، شکل انتقال حرارت  ، نوع ساخت و ... دسته بندیهای مختلفی دارد . برخی از دسته های مشهور مبدل ها به شرح زیر است:

مبدل های حرارتی پوسته لوله_ این مبدل ها متشکل از یک پوسته استوانه ای و کویل مسی هستند که معمولا کویل مسیر گردش سیال ثانویه (سیال گرم شونده) و پوسته محل عبور سیال اولیه (سیال گرم کننده) است.

مبدل های حرارتی مستغرق_ مبدل های حرارتی مستغرق نیز در انواع مختلف صفحه ای، لوله ای، لوله ای پیوسته یا لوله U شکل طراحی و ساخته می شود. ساختار این مبدل ها به گونه ای است که در سیال گرم شونده غوطه ور هستند. در این نوع مبدل ها کویل محل گردش سیال اولیه است.

مبدل های حرارتی لوله ای_ این نوع مبدل ها از دو لوله متداخل هم مرکز تشکیل می شود که سیالات گرم شونده و گرم کننده در یکی از لوله ها جریان پیدا می کند.

مبدل حرارتی دستگاهی است که برای انتقال حرارت از جریانی ببا دمای بالا تر به جریانی با دمای پایین تر مورد استفاده قرار می گیرد.

مبدل حرارتی صفحه ای

مبدل پوسته لوله

مبدل حرارتی پوسته و لوله ای

مبدل صفحه ای

مبدل حرارتی صفحه ای

مبدل لوله ای

انتقال حرارت در هر مبدل حرارتی بنا بر درجه حرارت سیال ها به سه صورت زیر صورت می پذیرد:

انتقال حرارت هدایتی

انتقال حرارت جابجایی

انتقال حرارت تشعشعی

برای محاسبه و تعیین اندازه مبدل حرارتی استخر و جکوزی روشهای متعددی وجود دارد، مبدل حرارتی برای استخر باید بتواند در زمان راه اندازی، آب استخر را به درجه حرارت مناسب رسانده و همچنین در حین کار استخر افت های حرارتی را جبران کند. بر این اساس برای جلوگیری از اتلاف حرارتی از سه سری مبدل استفاده می شود:

  • سری اول برای پیش گرمایش آب استخر
  • سری دوم برای جبران اتلافات حرارتی
  • سری سوم برای تامین آب گرم مورد نیاز جکوزی     

مبدل دارای دو ورودی و دو خروجی است. آب گرم شده بویلر از یک سمت وارد کویل شده و از سمت دیگر آب استخر وارد پوسته مبدل می گردد، پس از تبادل حرارتی دمایش بالا رفته و آب بویلر کمی خنک می شود. معمولا آب بویلر با دمای 70 درجه سانتی گراد وارد و با  60 درجه سانتی گراد خارج می گردد و آب استخر نیز با حرارت 26.7 درجه سانتی گراد وارد مبدل شده. با دانستن، حجم استخر (دبی فیلتراسیون که بنابر کاربری استخر از 4 تا 8 ساعت یک بار کل استخر فیلتر می شود بدست می آید) و دمای ورودی مبدل، می توان دمای خروجی از مبدل و مدل آن را تعیین کرد.

Q1(kcal/h)= MC∆θ =Vlit∆θ

برای جلوگیری از افزایش درجه حرارت آب خروجی از مبدل ها، از ترموستات و اکوستات استفاده می شود اما دقیق ترین روش برای کار با مبدل ها، شیر سه راه موتوری می باشد که به دلیل گران تمام شدن سیستم از این مورد کمتر در ایران استفاده می شود. درحالی که باید ذکر کرد در صورت استفاده نکردن از این نوع از شیر ها در تاسیسات استخر، امکان ورود آب با درجه حرارت بالا به استخر یا جکوزی وجود دارد که برای سوزاندن پوست شناگرانی که در کنار ورودی های آب قرار دارند خطر ساز خواهد بود.


برچسب‌ها: مبدل حرارتی چیست
نوشته شده در تاريخ پنجشنبه بیست و دوم آبان 1393 توسط امید اشکانی

بررسی کامل مبانی کریستالوگرافی

بسیاری از پیشرفت‌های صنعتی، به خصوص در حوزه تجهیزات الکترونیکی، ناشی از گسترش دانش جدید فیزیک حالت جامد هستند. اولین گام در معرفی فیزیک حالت جامد، مبانی کریستالوگرافی است. بلورشناسی یا کریستالوگرافی علمی است که به قوانین حاکم بر حالت بلورین مواد جامد، آرایش اتمی/مولکولی بلورها، شبکه های کریستالی، جهات و صفحات کریستالی و نحوه تشکیل و رشد بلورها می‌پردازد. نظم اتم‌ها و یون‌ها نقش اساسی در تعیین ریزساختار و خواص مواد ایفا می‌کند. در این قسمت ابتدا به معرفی اجمالی فیزیک حالت جامد پرداخته و سپس به بررسی مبانی کریستالوگرافی خواهیم پرداخت.

مقدمه ای بر فیزیک حالت جامد

کامپیوترها، تلویزیونهای جدید، و تلفن های همراه نمونه‌هایی از تجهیزاتی هستند که هر روزه با آن‌ها سروکار داریم و جهت بررسی رفتارهای آن‌ها نیاز به مطالعه فیزیک حالت جامد است. محققان فیزیک حالت جامد ساختار درونی جامد را مطالعه می‌کنند. آنها در تلاشند که با درک رفتار اتم‌ها و مولکول‌ها، خواصی که جامدات از خود نشان می‌دهند را تحلیل کنند. این مطالعات به دستاوردهای ناشناخته و جدیدی در خواص مواد منجر شده است.

ساخت ترانزیستورها بر پایه نظریات خواص الکتریکی جامدات نیمه رسانا، که توانست جای لامپهای خلاء حجیم در رادیوها، کامپیوترها و خیلی از ابزارهای دیگر را بگیرد؛ و ساخت لیزر بر اساس بررسی رفتار یاقوت در جذب و نشر امواج نوری، دو مورد از پیشرفت‌های اساسی در زمینه فیزیک حالت جامد است که در طول تاریخ همواره مورد توجه قرار می‌گیرد و روند پیشرفت صنایع را متحول کرده است. هم اکنون ابزارهای حالت جامد اغلب با پیش‌بینی‌های نظری ساخته می شوند تا خواص دلخواه را داشته باشند.

اولین بار در سال 1912 بود که ماکس فون لاو نشان داد که کریستال‌ها، اشعه ایکس را به شکل منظمی متفرق می کنند. تفرق اشعه ایکس مشخص می کرد که یک کریستال، شکل منظمی از اتمها یا مولکولها را در الگویی مرتب نشان می‌دهد. همکنون از روش تفرق اشعه ایکس جهت بررسی خواص کریستال‌ها از جمله، میزان کریستالی بودن مواد، ساختار کریستالی، اندازه کریستال‌ها و پارامترهای شبکه‌ای استفاده می‌شود.

نظم در بعد کوتاه و در برد بلند

در حالت کلی ماده در سه حالت مختلف جامد، مایع و گاز قرار دارد. در این حالت‌ها، ماده سه حالت کلی نظم را می‌تواند به خود بگیرد. آرایش بی‌نظم، آرایش منظم در برد کوتاه(Short-Range Order یا SRO) و آرایش منظم در برد بلند(Long-Range Order یا LRO). شکل 1 ساختارهای اتمی و یونی مواد با درجه نظم مختلف را نشان می‌دهد. همانظور که مشاهده می‌باشد شکل a ساختار بی‌نظم، شکل b و c ساختارهای منظم در برد کوتاه و شکل d ساختار در برد بلند را نشان می‌دهند.

filereader.php?p1=main_0b8ab53230f04066c

شکل 1- درجات مختلف نظم در مواد مختلف


موادی شامل گازهای تک اتمی مانند آرگون، حتی در بعد کوتاه هم نظمی ندارند و مواد نامنظم نامیده می‌شوند. این در حالی است که مواد منظم در بعد کوتاه، مانند آب، شیشه‌های سیلسکاتی و بسیاری از پلیمرها، تنها در برد چند اتمی و مولکولی دارای نظم هستند. در نهایت مواد منظم در برد بلند مانند بسیاری از فلزات و آلیاژها، نیمه‌هادی‌ها، سرامیک‌ها و بعضی از پلیمرها دارای نظمی در بردی فراتر از برد اتمی و مولکولی(تقریبا بزرگتر از 10 نانومتر) هستند. قابل ذکر است که برخی از مواد می‌توانند در شرایط مختلف درجات مختلف نظم را به خود بگیرند از این دسته از مواد می‌توان به کریستال‌های مایع(Liquid Crystals) اشاره کرد که در صفحات ال سی دی استفاده می شوند. با اعمال میدان خارجی مولکولهای قطبی به گردش در آمده و به سطح معینی از نظم می رسند. شکل 2 اساس کار صفحات ال سی دی را نشان می‌دهد.


filereader.php?p1=main_3667f6a0c97490758
شکل2- اساس ال سی دی ها ایجاد نظم در کریستالهای مایع با اعمال میدان الکتریکی

بر این اساس مواد منظم با برد کوتاه را مواد آمورف(Amorphous Materials) و مواد منظم با برد بلند را مواد کریستالی(Crystalline Material) می‌گویند. همانطور که اشاره شد جامدهای غیرکریستالی یا آمورف از اتمها، یونها، یا مولکولهایی که به شکل تصادفی در کنار هم قرار گرفته اند تشکیل شده‌اند که هیچ طرح منظم یا ساختار شبکه ای معینی را ایجاد نمی کنند.

مواد کریستالی

جامد کریستالی شکل جامدی از ماده است که در آن اتم‌ها یا مولکول‌ها در یک طرح تکرار شونده معین در سه بعد مرتب شده اند. در واقع در کریستال‌ها اتمها با الگویی که در سه بعد تکرار می شود، کنار هم قرار می گیرند. به این آرایش منظم سلول واحد (Unit Cell) گفته می‌شود. علاوه بر مشخص بودن شکل هندسی، خاصیت ناهمسانگردی (تفاوت خواص در جهات مختلف کریستالی) و تقارن از خصوصیات دیگر کریستال‌ها است. مواد کریستالی به دو دسته مواد تک‌بلور (SingleCrystal) و چند‌بلور (PolyCrystal) تقسیم می‌شود.


تک کریستال ساختار اتمی دارد که به طور منظم در کل حجم تکرار می شود. تک کریستال‌ها در بهترین حالت ممکن هستند و درجه نظم بالایی دارند و تکرار هندسی منظم آنها در تمامی حجم ماده دیده می‌شود. شکل 3 چگونگی قرارگیری اتم‌ها در یک تک‌بلور را نشان می‌دهد.


filereader.php?p1=main_1779cf3aa50c413af
شکل 3- چگونگی قرارگیری اتم‌ها در یک تک‌بلور

جامد چندکریستالی ماده‌ای است که از کنار هم قرار گرفتن تعداد زیادی تک‌کریستال متفاوت به نام کریستالیت یا دانه (Grain) ایجاد شده است. نظم اتمی از یک حوزه به حوزه دیگر در دانه‌ها تغییر می کند. این نواحی(دانه‌ها) از طریق مرزهایی از هم جدا شده اند که مرزدانه (Grain Boundary)نامیده می‌شود. تغییر نظم باعث ضعیف شدن پیوندها در مرزدانه‌ها می‌شود. نواحی منظم یا نواحی تک کریستال از نظر ابعاد و شکل مرتب شدن درکنار هم، با یکدیگر متفاوتند. قطر متوسط دانه بندی ها معمولاً 10 نانومتر تا 100 میکرومتر است و جامدهای چند کریستالی با دانه‌بندی‌هایی که متوسط قطر آن از 100 نانومتر کمتر است نانوکریستال نامیده می شوند. شکل 4 نحوه قرارگیری اتم‌ها در یک چندبلور و محل مرزدانه‌ها را نشان می‌دهد.

filereader.php?p1=main_6e1fcd704528ad8bf
شکل 4- نحوه قرارگیری اتم‌ها در یک چندبلور[1]

قابل ذکر است که نمی‌توان ساختاری ساخت و ادعا کرد این ساختار یک کریستال کامل است. عیوب کریستالی، عیوب حرارتی و ناخالصی‌ها از جمله عیوبی هستند که نظم کریستالی را کاهش می‌دهند. یک کریستال کامل کاملاً مات است و این در حالی است که با تغییر میزان حالت کریستالی، شفافیت کریستال تغییر می کند. همچنین تقارن نیز از پارامترهای مهم یک کریستال است که تاثیر فراوانی در خواص ماده دارد.


http://www.uplooder.net/img/image/52/9da8b1353925d025d8ac2572c37340de/108.gif


برچسب‌ها: بررسی کامل مبانی کریستالوگرافی

ادامه مطلب
نوشته شده در تاريخ چهارشنبه بیست و یکم آبان 1393 توسط امید اشکانی

ریخته گری آلومنیوم و عیوب آن

کاربرد آلومینیم :

این آلیاژ به علت ویژگی های خاصی که دارد در بیشتر صنایع از جمله اتومبیل سازی - غذاسازی - ساختمان سازی - بلوکه های سیلندر خودرو - اسکلت سازی - صنایع پتروشیمی و صنایع هوایی به کار می رود .

 آلیاژ های آلومینیم

به طور کلی آلیاژ های آلومینیم به دو دسته کلی تقسیم می شود :

1- آلیاژ های نوردی

2- آلیاژ های ریخته گی .

آلومینیم به علت داشتن ساختار FCC و تراکم زیاد در ساختار شبکه بلوریش فرم کاری خوبی در درجه حرارت محیط دارد .

آلیاژ های نوردی :

در آلیاژ های نوردی ابتدا آلیاژ به شکل شمش ریخته می شود سپس با توجه به شرایط تولید هر یک از فرآیند های کار سرد شامل : نورد ، فورج ، سوراخ کاری ، برش و .... روی قطعه انجام می شود .

روش های تولید شمش های نوردی :


معمولا دو روش برای تهیه شمش نوردی استفاده می شود :

1- روش مداوم

2- روش نیمه مداوم و یا تکباری

روش مداوم :

این روش که از سرعت تولید بالایی برخوردار است به این صورت که محفظه ای از فولاد گرم که در زیر پاتیل مذاب قرار دارد مذاب را به صورت دائم دریافت می نماید ، مذاب پس از رها شدن از پاتیل وارد محفظه شده و در مرحله اول آب گرد هایی که در قسمت بالای محفظه قرار دارند مذاب را به مرحله خمیری می رساند در مرحله بعد مذاب به مرحله آب فشان رسیده و به طور کامل منجمد می شود و در پایان تیغه ای که در انتهای محفظه قرار دارد فلز را برش زده و بر روی صفحه نقاله می اندازد .

روش تکباری :

این روش که در کارخانه ها و به وسیله قالب های ماسه ای انجام می شود به این صورت است که ابتدا کوره را به مقدار معینی شارژ کرده سپس شارژ آماده شده را در قالب های مورد نظر می ریزند .

تهیه آلیاژ های ریخته گی ( فرآیند شکل ریزی) :

هدف تولید :

تولید شکل نهایی قطعه به صورت مذاب ریزی مستقیم

انواع مواد شارژ جهت ریخته گری آلیاژ های آلومینیم

  شمش اولیه :

این شمش معمولا در کارخانه های ریخته گری تولید می شود و از درصد خلوص بالایی در خدود 99/9 % برخوردار است که معمولا به صورت پوکه های مستطیل شکل با وزن 15 الی 20 کیلو گرم تهیه می شوند . که جهت آلیاژ سازی آن ها از شمش های منیزیم ، روی ، سیلیسیم استفاده می شود که معمولا از شمش های منیزیم و سیلیسیم در مواقعی استفاده می شود که بخواهیم درصد کمی منیزیم و سیلیسیم به مذاب اضافه کنیم در غیر این صورت از آلیاژ ساز ها یا هاردنر ها (hardner) استفاده می کنیم.


http://www.donya-e-eqtesad.com/upload/iblock/f6b/f6be6f8a7d77ea410d3c6f2d3fac3c32.jpg

 شمش های ثانویه:

این شمش ها معمولا از ذوب مجدد قراضه های و برگشتی ها تولیدمی شود و با توجه به اینکه عملیات تصفیه و تمیز کاری روی این شمش ها انجام می شود از لحاظ قیمت گرانتر از شمش های اولیه می باشد اما دارای درصد خلوص و کیفیت بالاتری نسبت به شمش های اولیه می باشد.


http://www.nafisal.com/images/aluminum-casting.png

قراضه ها
:

که قیمت مناسبی داشته ولی قبل از استفاده باید عملیات تمیز کاری بر روی آن ها انجام شود .


http://www.scrapmonster.com/uploads/news/2013/4/1366268870.jpeg


برگشتی ها:

این شمش ها انواع قطعات معیوب سیستم راهگاهی را شامل می شود که به جهت شارژ مجدد در ریخته گری استفاده می شود .

آلیاژ ساز ها و یا هاردنر ها ( آمیژن ها) :

این گروه از آلیاژ ساز ها هنگامی استفاده میشود که قرار باشد عناصری را با نقطه ذوب بالاتر یا نقطه ذوب پایین تر به مذاب اضافه کنیم به عنوان مثال اضافه کردن مس با نقطه ذوب 1080 درجه سانتیگراد به مذاب آلومینیم که این عمل باید به صورت آمیژن انجام شود . یا اضافه کردن روی با نقطه ذوب 420 درجه سانتیگراد به مذاب آلومینیم که باید به صورت آمیژن انجام شود .

آمیژان آلومینیم سیلیسیم ( سیلومین):

نکته : آمیژن به معنی عنصری است که با آلومینیم آلیاژ سازی شده است . مانند آمیژن مس.

نکته : فلزاتی که دارای نقطه ذوب پایین هستند به علت فشار بخار زیاد در ریخته گری آلومینیم اگر به صورت خالص به مذاب اضافه شوند باعث پاشش مذاب می شوند .

انواع روش های تولید هاردنر ها :

روش اول : در این روش ابتدا مذاب آلومینیم را تهیه نموده سپس فلز مورد نظر را به صورت قطعات ریز و کوچک در داخل فویل های آلومینیمی قرار می دهیم و آرام و آرام به مذاب آلومینیم اضافه می کنیم

روش دوم : آلومینیم و فلز مورد نظر را به صورت جداگانه ذوب کرده و سپس فلز با نقطه ذوب بالا را به صورت باریکه مذاب به مذاب آلومینیم اضافه کرده و هم می زنیم.

بررسي انواع عيوب ريخته گري در قطعات آلومينيومي ريختگي تحت فشار

عيب سرد جوشي

سردجوشي عبارت است از برخورد دو جبهه از فلز مذاب اکسيد شده که باعث ناپيوستگي در قطعه ريخته شده مي شود . در صورتي که انجماد فلز خيلي پيشرفته باشد اتصال دو جبهه مذاب بطور کامل انجام شده و سردجوشي به صورت کشيدگي در قطعه ظاهر مي شود .

نحوه ايجاد عيب سرد جوشي

سردجوشي نتيجه تقسيم شدن موج مذاب در طول پر شدن قالب مي باشد اين تقسيم شدن مي تواند در اثر وجود يک مانع در راه عبور مذاب ( پين يا ماهيچه ) باشد و يا در اثر يک انسداد ناشي از جاري شدن به صورت جت مي باشد حضور اکسيد در فلز مذاب قبل از ريخته گري پديده سردجوشي را شديدتر مي نمايد عيب نيامد.

نيامد عيبي است که در اثر نرسيدن مذاب به قسمت هايي از قطعه ايجاد مي شود اين عيب مي تواند در نواحي نازک قطعه ايجاد شود و از نظر ظاهري به عيب سردجوشي شبيه است

نحوه ايجاد عيب نيامد

عيب نيامد نتيجه تقسيم شدن جبهه مذاب در حين پر شدن قالب است فلز خيلي سرد بوده و يا زمان پر شدن قالب خيلي طولاني مي باشد و يا حتي ممکن است جهت حرکت مذاب در قالب در حين پرشدن قالب نامناسب باشد به طوري که مذاب مسير طولاني را براي رسيدن به هدف بپيمايد در اين حال قبل از اينکه قالب توسط مذاب پر شود انجماد آغاز شده و نيامد ايجاد مي شود.

عيب مک هاي گازي

اين عيب به صورت مک هايي با ديواره صاف ظاهر مي شود که شکل کروي داشته و با سطح خارجي نيز ارتباطي ندارند سطح داخلي اين مک ها معمولا ً براق بوده اما گاهي ممکن است تا حدودي اکسيده نيز شده باشد که بستگي به منشأ ايجاد مک ها دارد .


نحوه ايجاد عيب مک هاي گازي

الف ) حبس هوا در حين پر شدن قالب : پرشدن قالب هاي ريخته گري تحت فشار معمولا ً به صورت تلاطمي انجام شده و اين تلاطم باعث حبس هوا در قالب مي شود .

ب) حبس هوا در محفظه نگهدارنده مذاب : در ماشين هاي محفظه سرد در هنگام اولين فاز تزريق ذوب هوا مي تواند وارد مذاب شده و در هنگام پر شدن قالب هوا در بخش هاي زيادي از مذاب محبوس گردد .

پ) حبس گاز در محفظه سيلندر تزريق : اين حالت در اثر تبخير و يا تجزيه ماده حلال موجود در روانساز پيستون ايجاد مي شود در نتيجه در هنگام ورود مذاب به اين قسمت ها بايد ماده روانساز به صورت خشک باشد .

ت) حبس گاز از طريق مواد مذاب : همان فرآيند ذکر شده در فوق مي باشد که ناشي از تبخير ناقص روانساز قالب و يا تجزيه آن هنگام رسيدن مذاب مي باشد .

ث) آزاد شدن گاز حل شده در فلز مذاب : آلومينيوم و آلياژهاي آن به راحتي آب و ديگر ترکيبات هيدروژن دار ( مانند روغن و گريس ) را تجزيه مي نمايند هيدروژن آزاد شده در هنگام اين تجزيه در فلز حل شده و هر چه دما باشد ميزان ورود هيدروژن به فلز نيز بيشتر خواهد بود برعکس حلاليت هيدروژن درآلومينيوم در حالت جامد عملا ً ناچيز است در نتيجه در حين انجماد هيدروژن حل شده در مذاب آزاد شده و ايجاد سوراخ هاي ريز مي نمايد0

عيب مک هاي انقباضي :

مک هاي انقباض به صورت حفره با فرم و اندازه متغير مي باشند اين مک ها بر عکس مک و حفره هاي گازي سطوح صاف و براق نداشته و کم و بيش حالت کندگي و سطوح دندريتي دارند .

نحوه ايجاد عيب مک هاي انقباضي

در هنگام انجماد فلز دچار انقباض حجمي گرديده و در صورت عدم وجود فلز مذاب جبران کننده انقباض ، اين انقباض به صورت يک يا چند حفره ظاهر مي گردد اين حفره ها مي توانند در سطح قطعات ريختگي ظاهر شوند ( مثلا ً در مواردي که مذاب در شمش ريزي منجمد مي شود ) و يا برعکس به صورت بسته در داخل قطعه محبوس گردند که معمولا ً در ريخته گري تحت فشار مشاهده مي شود .

عيب آبلگي

عيب آبلگي همانند حفره هاي گازي است اما در سطح قطعه ظاهر مي شود همچنين در مورد قطعات نازک اين عيب مي تواند در دو سطح قطعه نيز ظاهر شوند .


http://www.behafarinco.ir/userfiles/images/a81.jpg

طريقه ايجاد عيب آبلگي

روش ايجاد آبلگي همانند ايجاد عيب حفره هاي گازي است ولي در اين مورد آزاد شدن هيدروژن حل شده بر خلاف ايجاد حفره هاي گازي ، به صورت غير کافي انجام مي گيرد در اين حال در صورتي که درجه حرارت قطعه در هنگام باز کردن قالب بيش از حد بالا باشد مقاومت مکانيکي آلياژ بسيار ضعيف بوده و حفره هاي گازي ايجاد شده تحت فشار فوق العاده قوي موجب تغيير شکل قطعه در نواحي نزديک سطح مي شوند همچنين در صورت نازک بودن قطعه نسبت به قطر حفره گازي نيز عيب فوق به وجود مي آيد

عيب مک هاي سوزني ( ريزمک)

ريز مک هاي سطحي به صورت سوراخ هاي بسيار ريز ( چند صدم ميلي متر ) و اغلب به صورت گروهي مشاهده مي گردند .

نحوه ايجاد عيب مک هاي سوزني

الف ) حبس گاز : در اين مورد تاول هاي ريزي به وسيله حباب هاي گازي که در نواحي بسيار نزديک سطح محبوس گرديده اند ايجاد مي شود .

ب) اکسيدها : اکسيدهاي موجود در فلز نيز مي توانند عيب فوق را ايجاد نمايند .

عيب ترک خوردگي

عيب ترک خوردگي به صورت ايجاد ترک هاي کم و بيش نازک و عميق ظاهر مي شود در برخي موارد اين ترک ها مي توانند حتي ضخامت قطعه را نيز طي نمايند .

نحوه ايجاد عيب ترک خوردگي.

اين نوع ترک ها بين دانه اي بوده و به فرم هاي غيرمنظم مي باشند اين ترک ها هنگامي ايجاد مي شوند که آلياژ در انتهاي انجماد تحت تنش باشد . در اغلب موارد خطر ايجادترک در نواحي از قطعه که مستعد ايجاد تنش مي باشند و در نقاط گرم بيشتر است .

عيب سخت ريزه

اين عيب به صورت ناهنجاري ساختاري و يا حضور اجسام خارجي مي باشد که در حين ساخت و يا فرسايش و يا شکست ابزار برش ايجاد مي شوند.

نحوه ايجاد عيب سخت ريزه

عيب سخت ريزه در ريخته گري تحت فشار مي تواند مبدأ متفاوتي داشته باشد .

الف ) ترکيبات بين فلزي

ترکيبات m-Al(Fe,Mn)Si

اين ترکيبات بر روي برش هاي قطعات به صورت سوزن هاي کوتاه ديده مي شود که در حقيقت به صورت ذرات بريده مشاهده مي شود .

ترکيبات x-Al(Fe,Mn)Si

اين ترکيبات به فرم خطوط چيني ريز مشاهده مي شوند اين ترکيبات نسبت به ترکيبات قسمت قبل (m-Al(Fe,Mn)Si) بر روي خواص مکانيکي ضرر کمتري داشته و در فرآيند ساخت عملا ً مشکلي را ايجاد نمي نمايند .

ترکيبات c-Al(Fe,Mn)Si

اين ترکيبات به شکل بلورهاي چند وجهي با طول متغير مي باشند اين نوع ترکيبات هنگامي ايجاد مي شوند که درجه حرارت حمام مذاب به کمتر از حد معيني باشد که اين حد بستگي به مقدار آهن ، منگنز و کروم در آلياژ دارد.

ب) اکسيداسيون ، واکنش با ديرگدازه ها

آلياژهاي آلومينيوم مخصوصا ً در حالت مايع طبيعتا ً بسيار اکسيد شونده هستند وي حمام آلياژ مذاب معمولا ً لايه اي از اکسيد آلومينيوم ايجاد مي شود که به آن اکسيد آلومينيوم گاما مي گويند اين لايه به شدت محافظت کننده است اما طي چند ساعت يا چند ده ساعت به اکسيد آلومينيوم آلفا تبديل مي شود سرعت تبديل تابعي از درجه حرارت مي باشد از طرفي سرعت اکسيداسيون همچنين به حضور برخي عناصر آلياژي و از همه مهم تر در ريخته گري تحت فشار بستگي به حضور فلز روي در آلياژ دارد .

پ) ذرات خارجي

آزمايش سيستماتيک بر روي تعداد زيادي از نمونه ها به کمک ميکروسکوپ الکترونيکي نشان داده اند که اغلب ذرات خارجي موجود در قطعات ، متشکل از ذرات ديرگدازنشان داده اند که اغلب ذرات خارجي موجود در قطعات ، متشکل از ذرات ديرگداز ،(احتمالا ً با شکل تغيير يافته در اثر واکنش با آلومينيوم و يا ذرات بوته ) مي باشند .

عيب قطره هاي سرد

قطرات سرد به صورت طبله هاي کم و بيش کروي به صورت محبوس در روي قطعه ظاهر مي شوند واغلب موارد نيز قابل حل شدن و ايجاد پيوستگي ساختاري با فلز اطراف خود نمي باشند تنها راه تشخيص اين عيوب ، بررسي ريز ساختار آنها مي باشد.

نحوه ايجاد عيب قطره هاي سرد

قطرات سرد قسمت هايي از فلز هستند که به سمت ديواره هاي قالب و يا ماهيچه پاشيده شده اند و بلافاصله نيز منجمد گرديده اند بدون آنکه بتوانند توسط مذاب بعدي حذف گردند اين قطرات منجمد در داخل قطعه محبوس شده ، بدون آنکه ذوب مجدد شده باشند اين قطرات فقط باعث ايجاد يک غيرهمگوني در ساختار فلزي مي شوند .

علل عيب سرد جوشي

  • عدم تنظيم حرکت پيستون تزريق
  • طرح نامناسب سيستم مذاب رساني
  • پايين بودن سرعت دومين فاز مرحله تزريق
  • بيش از حد بودن مقدار مذاب تزريق شونده
  • سرد بودن قالب
  • سرد بودن مذاب هنگام تزريق
  • کوتاه بودن کورس ( زمان ) دومين مرحله تزريق

 

علل عيب مک هاي گازي

  • طرح نامناسب سيستم مذاب رساني
  • کم بودن سرعت دومين مرحله تزریق
  • بالا بودن سرعت دومين مرحله تزريق
  • طولاني بودن زمان مرحله تزريق
  • مشکل قالب گيري
  • عدم وجود هواکش به ميزان کافي در قالب
  • کيفيت نامناسب مذاب ( تميز نبودن يا حضور اکسيدها)
  • عدم تنظيم سرعت مرحله اول تزريق

علل عيب مک هاي انقباضي

  • فشار نامناسب مرحله سوم ( تزريق
  • عدم تنظيم حرکت پيستون تزريق
  • طرح نامناسب سيستم مذاب رساني
  • سرعت خيلي پايين مرحله دوم تزريق
  • گرم بودن قالب
  • کيفيت نامناسب مذاب ( تميز نبودن يا حضور اکسيدها

علل عيب آبلگي

  • عدم تنظيم حرکت پيستون تزريق
  • سرعت پايين مرحله دوم تزريق
  • بالا بودن سرعت مرحله دوم تزريق
  • طولاني بودن زمان مرحله دوم تزريق
  • مشکل قالب گيري
  • عدم وجود هواکش به اندازه کافي در قالب
  • کيفيت نامناسب مذاب ( تميز نبودن يا وجود اکسيدها)
  • عدم تنظيم سرعت مرحله اول تزريق

علل عيب مک هاي سوزني

  • طرح نامناسب سيستم مذاب رساني
  • طولاني بودن زمان مرحله دوم تزريق
  • زمان نامناسب قالب گيري
  • عدم وجود هواکش به ميزان کافي در قالب
  • کيفيت نامناسب آلياژ مذاب ( تميز نبودن يا وجود اکسيدها)
  • عدم تنظيم سرعت مرحله اول تزريق

علل عيب ترک خوردگي

  • نامناسب بودن عمل تزريق
  • فشار نامناسب مرحله سوم تزريق
  • گرم بودن قالب
  • گرم بودن مذاب تزريق شونده
  • مشکل قالب گيري
  • کيفيت نامناسب مذاب ( تميز نبودن يا وجود اکسيدها)

علل عيب سخت ريزه

  • نامناسب بودن ترکيب شيميايي آلياژ
  • نامناسب بودن زمان انجماد
  • وجود ترکيبات بين فلزي در آلياژ
  • اکسيد شدن آلياژ و واکنش با ديرگدازه ها
  • وجود هر گونه ذرات خارجي در آلياژ

علل عيب قطرات سرد

  • عدم تنظيم حرکت پيستون تزريق
  • طرح نامناسب سيستم مذاب رساني
  • پايين بودن سرعت مرحله دوم تزريق
  • سرد بودن مذاب تزريق شونده
  • کوتاه بودن زمان مرحله دوم تزريق  


برچسب‌ها: ریخته گری آلومنیوم و عیوب آن
نوشته شده در تاريخ سه شنبه بیستم آبان 1393 توسط امید اشکانی

ثبت نام کنکور کارشناسی ارشد 1394

http://www.uplooder.net/img/image/64/fd09d70db50b6357814bd0dad62a20da/362.gif


به اطلاع کلیه دانشجویان عزیز می رسانیم ، ثبت نام کنکور کارشناسی ارشد 1394 شروع شده است . برای ثبت نام به سایت سازمان سنجش مراجعه کنید .

  • مهلت ثبت نام : زمان شروع ثبت نام از روز شنبه 17 آبان 1393 لغایت روز یکشنبه 25 آبان 1393 می باشد
  • ویرایش اطلاعات ثبت نام : در وارد کردن اطلاعات ثبت نام خود دقت کنید .
  • توجه ویژه : در صورتی که در مراحل ثبت نام در سیستم به مشکلی برخورد کردید، تمامی پنجره های مرورگر را بسته و از ابتدا مراحل ثبت نام را آغاز نمایید.
  • توجه ویژه : ثبت نام شما زمانی تکمیل گردیده که در مراحل ثبت نام از سیستم شماره پرونده 7 رقمی  و کد پیگیری ثبت نام 16 رقمی دریافت نمایید.


می توانید به صورت رایگان دفترچه ثبت نام را از طریق لینک زیر دریافت کنید .

برای دانلود دفترچه کلیک کنید.




برچسب‌ها: ثبت نام کنکور کارشناسی ارشد 1394
.: Weblog Themes By Pichak :.


http://www.uplooder.net/





Powered by WebGozar

metallurgypaper.blogfa.com value metallurgypaper.blogfa.com Real PR تماس با ما
تمامی حقوق این وبلاگ محفوظ است | طراحی : امید اشکانی
  • تنهای تنها
  • قالب بلاگفا